A DFT-Based Model on the Adsorption Behavior of H2O, H+, Cl-, and OH- on Clean and Cr-Doped Fe(110) Planes

نویسندگان

  • Jun Hu
  • Chaoming Wang
  • Shijun He
  • Jianbo Zhu
  • Liping Wei
  • Shunli Zheng
چکیده

The impact of four typical adsorbates, namely H2O, H+, Cl−, and OH−, on three different planes, namely, Fe(110), Cr(110) and Cr-doped Fe(110), was investigated by using a density functional theory (DFT)-based model. It is verified by the adsorption mechanism of the abovementioned four adsorbates that the Cr-doped Fe(110) plane is the most stable facet out of the three. As confirmed by the adsorption energy and electronic structure, Cr doping will greatly enhance the electron donor ability of neighboring Fe atoms, which in turn prompts the adsorption of the positively charged H+. Meanwhile, the affinity of Cr to negatively charged adsorbates (e.g., Cl− and O of H2O, OH−) is improved due to the weakening of its electron donor ability. On the other hand, the strong bond between surface atoms and the adsorbates can also weaken the bond between metal atoms, which results in a structure deformation and charge redistribution among the native crystal structure. In this way, the crystal becomes more vulnerable to corrosion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube

The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...

متن کامل

Coverage dependent water dissociative adsorption on Fe(110) from DFT computation.

Using density functional theory calculations and ab initio atomistic thermodynamics, H2O adsorption and dissociation on the Fe(110) p(4 × 4) surface at different coverages have been computed. At the lowest coverage, the adsorbed H2O, OH, O and H species can migrate easily on the surface. For (H2O)n adsorption, H2O molecules donating H atoms for H-bonding adsorb more strongly than those acceptin...

متن کامل

Adsorption of ethanol by using BN nanotube: a DFT study

Electrical sensitivity of a boron nitride nanotube (BNNT)  was examined toward C2H5OH molecules by using density functional theory (DFT)  calculations . It was founding that the adsorption energy(Ead) of ethanol on the  pristine  nanotubes  is about -51.5 kJ / mol, but when  the nanotube has been doped  with Si and Al atoms , the adsorption  and recovery time ch...

متن کامل

First-Principles Modeling of Direct versus Oxygen-Assisted Water Dissociation on Fe(100) Surfaces

The O–H bond breaking in H2O molecules on metal surfaces covered with pre-adsorbed oxygen atoms is an important topic in heterogeneous catalysis. The adsorption configurations of H2O and relevant dissociation species on clean and O-pre-adsorbed Fe(100) surfaces were investigated by density functional theory (DFT). The preferential sites for H2O, HO, O, and H were investigated on both surfaces. ...

متن کامل

Kinetic Modeling of the High Temperature Water Gas Shift Reaction on a Novel Fe-Cr Nanocatalyst by Using Various Kinetic Mechanisms

In this work the kinetic data demanded for kinetic modeling were obtained in temperatures 350, 400, 450 and 500 oC by conducting experimentations on a Fe-Cr nanocatalyst prepared from a novel method and a commercial Fe-Cr-Cu one. The collected data were subjected to kinetic modeling by using two models derived from redox and associative mechanisms as well as an empirical one. The coefficients o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018